Retinal shows its true colours: photoisomerization action spectra of mobility-selected isomers of retinal protonated Schiff base†

نویسندگان

  • N. J. A. Coughlan
  • B. D. Adamson
  • L. Gamon
  • K. Catani
  • E. J. Bieske
چکیده

Retinal is one of Nature’s most important and widespread chromophores, exhibiting remarkable versatility in its function and spectral response, depending on its protein environment. Reliable spectroscopic and photochemical data for the isolated retinal molecule are essential for calibrating theoretical approaches that seek to model retinal’s behaviour in complex protein environments. However, due to low densities and possible co-existence of multiple isomers, retinal is a challenging target for gas-phase investigations. Here, the photoisomerization behaviour of the trans isomer of retinal protonated Schiff base (RPSB) is investigated in the gas phase by irradiating mobility-selected RPSB ions with tunable light in a tandem ion mobility spectrometer. Trans RPSB ions are converted to single cis isomers and also more compact isomers through irradiation with visible light. The S1←S0 photoisomerization action spectrum of trans RPSB, obtained by monitoring production of cis isomers as a function of wavelength, exhibits a single well-defined peak with a maximum at 618±5 nm. Corresponding action spectra of cis RPSB isomers exhibit broader peaks, conclusively demonstrating an isomeric dependence for the RPSB spectrum in the gas phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retinal shows its true colours: photoisomerization action spectra of mobility-selected isomers of the retinal protonated Schiff base.

Retinal is one of Nature's most important and widespread chromophores, exhibiting remarkable versatility in its function and spectral response, depending on its protein environment. Reliable spectroscopic and photochemical data for the isolated retinal molecule are essential for calibrating theoretical approaches that seek to model retinal's behaviour in complex protein environments. However, d...

متن کامل

Study of Photoisomerization in Cis-Retinal as a Natural Photo Switch in Vision Using Density Functional Theory

In the present study, theoretical chemical reactivates Photo isomerization in Cis-Retinal as a Natural Photo switch in Vision. DFT hybrid functional, B3LYP and, post-HF method, were the theoretical methods applied utilizing G09 software. 6-31G+ (d,p) basis set employed for structural optimizations, and single point computations performed using B3LYP/6-31G+(d,p). The isomers cis molecule retinal...

متن کامل

Study of Photoisomerization in Cis-Retinal as a Natural Photo Switch in Vision Using Density Functional Theory

In the present study, theoretical chemical reactivates Photo isomerization in Cis-Retinal as a Natural Photo switch in Vision. DFT hybrid functional, B3LYP and, post-HF method, were the theoretical methods applied utilizing G09 software. 6-31G+ (d,p) basis set employed for structural optimizations, and single point computations performed using B3LYP/6-31G+(d,p). The isomers cis molecule retinal...

متن کامل

Acceleration of the Z to E photoisomerization of penta-2,4-dieniminium by hydrogen out-of-plane motion: theoretical study on a model system of retinal protonated Schiff base.

We report the result of comparison between two reaction coordinates [on the potential energy surface of the first excited state (S(1))] produced by CASSCF and these energies recalculated by MRMP2 in the Z to E photoisomerization of penta-2,4-dieniminium (PDI) as the minimal model of the retinal protonated Schiff base (RPSB). One coordinate is the S(1) state minimum-energy-path (MEP) in mass-wei...

متن کامل

Photoisomerization action spectroscopy: flicking the protonated merocyanine-spiropyran switch in the gas phase.

Laser spectroscopy and ion mobility spectrometry are combined to provide structural and photochemical information on photoisomerizing molecules in the gas phase. The strategy exploits the fact that an ion packet propelled through buffer gas by an electric field separates spatially and temporally into its constituent isomers because of small differences in their collision cross sections. Isomers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015